L-space knots

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Montesinos knots, Hopf plumbings and L-space surgeries

Using Hirasawa-Murasugi’s classification of fibered Montesinos knots we classify the L-space Montesinos knots, providing further evidence towards a conjecture of Lidman-Moore that L-space knots have no essential Conway spheres. In the process, we classify the fibered Montesinos knots whose open books support the tight contact structure on S. We also construct L-space knots with arbitrarily larg...

متن کامل

Polygonal Knot Space near Ropelength-minimized Knots

For a polygonal knot K, it is shown that a tube of radius R(K), the polygonal thickness radius, is an embedded torus. Given a thick configuration K, perturbations of size r < R(K) define satellite structures, or local knotting. We explore knotting within these tubes both theoretically and numerically. We provide bounds on perturbation radii for which we can see small trefoil and figure-eight su...

متن کامل

Lens space surgeries on A’Campo’s divide knots

It is proved that every knot in the major subfamilies of J. Berge’s lens space surgery (i.e., knots yielding a lens space by Dehn surgery) is presented by an L-shaped (real) plane curve as a divide knot defined by N. A’Campo in the context of singularity theory of complex curves. For each knot given by Berge’s parameters, the corresponding plane curve is constructed. The surgery coefficients ar...

متن کامل

The Embedding Space of Hexagonal Knots

The topology of the space of rooted oriented hexagonal knots embedded in R 3 is described, with special attention given to the number of components that make up this space and to the topological knot types which they represent. Two cases are considered: (i) hexagons with varying edge length, and (ii) equilateral hexagons with unit-length edges. The structure of these spaces then gives new notio...

متن کامل

The length scale of 3-space knots, ephemeral knots, and slipknots in random walks

The probability that a random walk or polygon in the 3-space or in the simple cubic lattice contains a small knot, an ephemeral knot, or a slipknot goes to one as the length goes to infinity. The probability that a polygon or walk contains a “global” knot also goes to one as the length goes to infinity. What immerges is a highly complex picture of the length scale of knotting in polygons and wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2018

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x17007989